M1.		(a)	(i)	There are three pairs of equivalent carbon atoms	1	
		(ii)	75p	ppm	1	
	(b)	(i)	4			
		(ii)	2		1	
	(c)	Each structure can represent a pair of cis/Z and trans/E isomers OR Optical isomers				

M2. (a) (i)

Reagent	Tollens	Fehlings or Benedicts	K ₂ Cr ₂ O ₇ /H ⁺	KMnO₄/H⁺	I₂/NaOH
			or acidified		
Propanal		red ppt or goes red (not red solution)	goes green	Ρ	No reaction
Propanone	no reaction	no reaction	no reaction		Yellow (ppt)

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^{2-}/H^+$ then mark on)

(ii) propanal 3 peaks ignore splitting even if wrong

propanone 1 peak

1

3

1

[5]

1

1

1

1

1

1

(b) **X** is CH₃CH₂COOH or propanoic acid if both name and formula given, both must be correct, but

allow propanol with correct formula

Mark the type of reaction and reagent/condition independently. The reagent must be correct or close to score condition

Y is CH₃CH(OH)CH₃ or propan-2-ol

Step 1 Oxidation

K₂Cr₂O¬/H⁺ or other oxidation methods as above allow Cr₂O¬²-H⁺ if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

Step 2 reduction or nucleophilic reduction or nucleophilic addition reduction or nucleophilic addition hydrogenation

NaBH4 LiAIH4 H2

in (m)ethanol or water or ether or dry

[15]

M3. (a) **A** any C_s alkene

В

(b) **C**

П

or HOCH₂CHO

(c) **E**

F

$$\begin{array}{ccc} \text{CH}_3\text{CH}_2\text{--}\text{C} & \\ \text{O---}\text{CH}_2\text{CH}_3 & (\text{allow }\text{C}_2\text{H}_5) \end{array}$$

1

1

1

1

Н

(e) I

J

$$\begin{tabular}{lll} H & $C=C$ & CH_2CH_3 & (allow C_2H_5) & NOT hex-3-ene \\ \end{tabular}$$

[10]

1

1

1

1

4

M4. (a) **X** (O–H) (alcohols)

penalise acid or missing "alcohol"

Page 5

Y C=O

allow carbonyl

NOT acid

M5.D

[1]

[16]

M6.

(a) (i)

1

(ii) H₃C—O or ROCH₅; (allow 1 if both (i) and (ii) give CH₃- or H₃C– only)

1

(iii) CH₂CH₂ or two <u>adjacent</u> methylene groups;

1

(iv)

$$\begin{array}{c} \text{CH}_3\text{-CCH}_2\text{-CH}_2\text{-OCH}_3\\ \parallel\\ \text{O} \end{array}$$

OR

CH₃COCH₂CH₂OCH₃;

1

(b) (i) OH in acids or (carboxylic) acid present

(ii)

(c)

reagent	K ₂ Cr ₂ O ₇ /H ⁺	KMnO₄ /H⁺
---------	---	-----------

Y	no reaction	no reaction
Z		purple to colourless or turns colourless

[9]

5

M7.B

[1]